PV diverter installation instructions MDC0007-04

For Mixergy embedded diverters

mixergy

System details

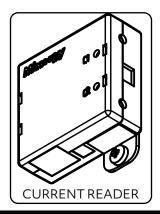
The Mixergy solar diverter is a device which allows your hot water cylinder to redirect and absorb excess solar energy from local PV panels in the form of hot water. This absorbed energy offsets primary energy demand of the hot water system, reducing running costs and lowering the carbon footprint of your water heating.

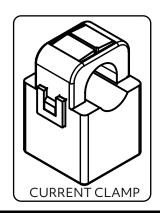
There are three versions of the system. All have a Mixergy solar divertor fitted to the cylinder but have a different accessory kit depending on the application

- MAS0071 accessory kit. Single current clamp and interface (MAS0061). This is for use with a single phase electricity supply.
- MAS0074 accessory kit. Three phase power meter and three ESCT-24 current clamps. This is for use with a three phase electricity supply. Note that this is fitted in the properties consumer unit and must be installed by a qualified electrical installer
- MAS0076 accessory kit. Similar to the MAS0074 kit but with smaller (SCT-10) current clamps and a different version of the three phase power meter. Note that this is fitted in the properties consumer unit and must be installed by a qualified electrical installer
- Check the part number on the outside of the accessory box to see which one you have ordered.

System specification

Thermostat cut-out temperature	80 °C
Immersion heater(s) rating	230-240 V~ 2.7-3.0 kW
Immersion heater(s) specification	EN 60335-2-73
Immersion heater(s) type	356 mm Incoloy/Ti
Modulation range	30W - 3000W
Immersion heater(s) type	100W


Contents


System details	2
System specification	2
Contents	3
Included parts - MAS0071 single current clamp kit	4
Included parts - MAS0074 - three phase kit	4
Included parts - MAS0076 - three phase kit	5
Installing the current reader - single version	6
Connecting to the diverter - single or dual version	7
Installing the three phase meter	8
Three phase meter wiring diagram	9
Installing the three phase current clamps	10
Configuring the three phase meter	
Update system firmware (3 phase meter only)	11
Software setup	12
Commissioning checklist	13
Troubleshooting	14
Spare parts	14

2

Included parts - MAS0071 single current clamp kit

- Solar diverter (pre-fitted to cylinder)
- CT interface (MAS0061)
- Current clamp (MEC0029) x 1
- Mounting hardware (VHB pad, screws x 2, wall plugs x 2)
- 1 m ethernet cable x1, 2m ethernet cable x1

Included parts - MAS0074 - three phase kit

- Solar diverter (pre-fitted to cylinder)
- SDM630MCT three phase DIN rail mounting power meter (MEL0078)
- ESCT-T24-100A/5A Current clamp (MEL0079) x 3
- 1 m ethernet cable x2, 2m ethernet cable x2

3 PHASE METER

CURRENT CLAMP

Included parts - MAS0076 - three phase kit

- Solar diverter (pre-fitted to cylinder)
- SDM630MCT-MV three phase DIN rail mounting power meter (MEL0089)
- SCT10-60A-333mV Current clamp (MEL0090) x 3
- 1 m ethernet cable x2, 2m ethernet cable x2

3 PHASE METER

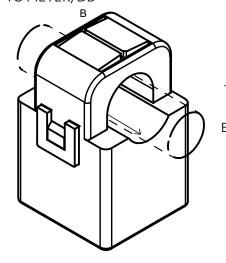
CURRENT CLAMP

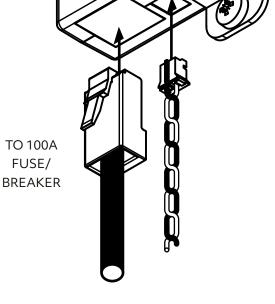
4 5

Installing the current reader - single version

Positioning the CT interface

The CT interface must be placed within 300mm of the household's incoming mains supply cabling.

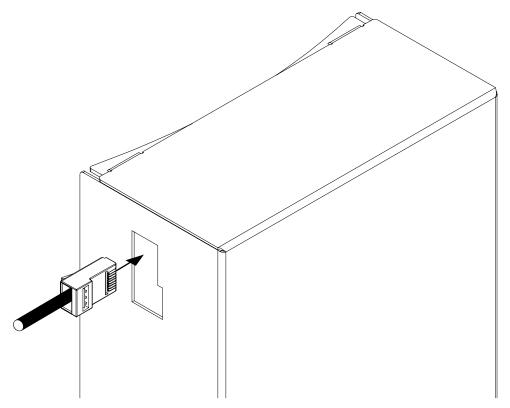

The CT interface should be fixed to the wall with the two provided screws using the case mounting holes as pictured below.


Installation of the current clamps

The current clamp must be attached around the neutral (blue/black) cable on the incoming mains supply with the arrow pointing **towards** the incoming supply 80/100A main fuse or breaker. If this is impractical it can be fitted round the live (brown/red) cable with the arrow pointing **away** from the incoming supply.

The current clamp must then be plugged into the single CT interface as pictured.

TO METER/DB



Connecting to the diverter - single or dual version

Connection of the CT interface to the diverter

The CT interface must be connected to the diverter using either cat5e or cat6 ethernet cable and standard RJ-45 connectors using the TIA/EIA-568-B.1-2001 T568B wiring scheme. Ensure that the cable used contains all 4 twisted pairs (8 conductors). Connection should be made between the RJ-45 port located on the left side of the PV diverter enclosure as pictured below and one of the 'zoneBUS' RJ45 ports on the dual CT interface OR to the single RJ45 connector on the single CT interface.

NOTE: While ethernet cable is used for this connection, the communication protocols used are not compatible with standard networking hardware and the connection between the diverter and clamp must be direct (i.e. no network switches or routing equipment is to be fitted in between)

Installing the three phase meter

Installing the three phase meter (both versions)

The three phase meter is a DIN rail mounted unit supplied by Eastron. It is normally mounted insde the properties consumer unit. It can be mounted in a suitable external enclosure (not supplied) if there is insufficient space in the consumer unit.

Follow the Eastron installation instructions for the meter following the three phase four wire diagram - see opposite.

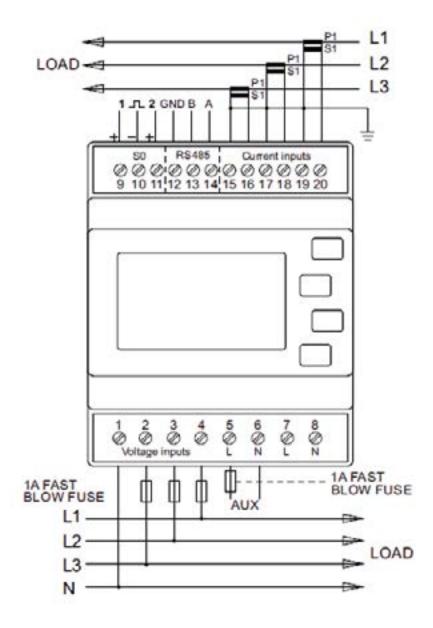
Note in particular the requirement for 1A fast blow fuses on the voltage inputs.

Installing the current clamps

See page 10.

Connecting to the diverter

The meter should be connected to the diverter using either cat5e or cat6 ethernet cable and standard RJ-45 connectors using the TIA/EIA-568-B.1-2001 T568B wiring scheme.


Connection should be made between the RJ-45 port located on the left side of the PV diverter enclosure as pictured above and the RS485 terminals on the meter.

Remove the RJ45 connector and wire as follows

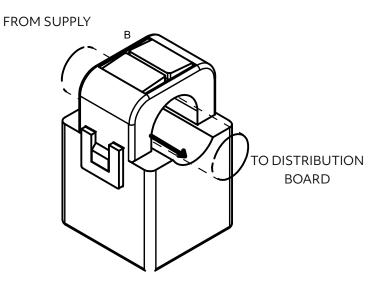
Signal	Wire Colour	Terminal
RS485 A	Orange	14
RS485 B	Orange/ White	13
GND	Green/White	12
GND	Green	12

The blue and brown pairs (if using 4 pair cable) should be cut back, ensuring that they can not short to each other or any other conductor.

Three phase meter wiring diagram

Installing the three phase current clamps

Installation of the current clamps


The current clamp must be attached around the live cable on each phase of the incoming mains supply.

For correct functioning of the system they **must** be positioned to read the entire consumption of the property - normally between the main supply fuse/circuit breaker and the meter.

Fit with the arrow pointing in the normal direction of energy flow - ie with the arrow pointing towards the property and away from the supply.

Wire as follows:

Phase	Supply cable colour Old colours in ()	Meter terminal - clamp black wire	Meter terminal - clamp white wire
L1	Brown (Red)	19	20
L2	Black (Yellow)	17	18
L3	Grey (Blue)	15	16

Configuring the three phase meter

Configuring the three phase meter (both versions)

Follow the meter user manual to set the following parameters:

SDM630MCT SDM630MCT-MV

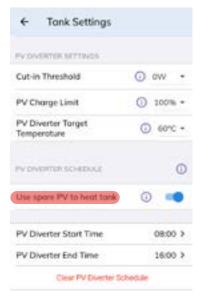
1.	Supply System:	SYS 3P4	SYS 3P4
2.	CT2*	5	0.333 (pre set)
3.	CT1* (ratio)	20	60
4.	RS485 Address	3	3
5.	Baud Rate	9600	9600
6.	Stop bits	1	1
7.	Parity	None	NONE

^{*}WARNING. As this is a MID certified meter these parameters can only be set once. Take extreme care that they are correct before leaving the setup pages. In the event of a problem contact Mixergy support.

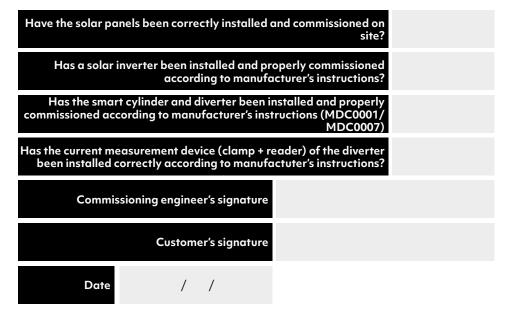
Update system firmware (3 phase meter only)

The main controller **must** be running **V5.7.0** or higher firmware to operate with the 3 phase meter.

Once the controller has been connected to the internet check the Firmware Version in the installer web portal https://www.mixergy.io/tanks.



Contact Mixergy Technical Support by calling +44 (0)1865 884 343 and selecting option 3 or emailing service@mixergy.co.uk to get the software updated if necessary. They will need the MX number of the controller.


Software setup

To enable diverter functionality, ensure the check-box 'Use spare PV to heat tank' is selected. This option can be found in the tank settings page on the Mixergy phone app or web portal (https://www.mixergy.io).

Commissioning checklist

Troubleshooting

If the fans on the diverter repeatedly run for a second then stop this indicates a communication problem with the diverter. Check the cable from controller to diverter.

If the controller is unable to detect the presence of the current reader, this will be indicated by a rapidly flashing red light on the front of the cylinder controller. If this is the case, double check the wiring between the cylinder controller, diverter and current clamp. If the problem persists please contact Mixergy directly.

If the cylinder switches the immersion on to full power at all times when diverting, this indicates that the current clamp has been installed with the arrow pointing in the wrong direction. Double check the arrow direction is facing as described on page 6. If the problem persists please contact Mixergy directly.

Spare parts

Do not attempt to repair or replace any parts of the Mixergy diverter unless you are a trained operative. If you suspect a fault or a replacement part is needed, please contact Mixergy directly.

To determine the correct parts for your system, please ensure you have your cylinder MX number which can be found on the name-plate located at the front of the cylinder.

Part description	Part no.
Enclosure cover	MME0074
Diverter PCB	MAS0056
Current reader (single)	MAS0061
High-limit stat (GTLHR070)	MEL0034
3 phase meter SDM630CT	MEL0078
ESCT-24 current clamp	MEL0079
3 phase meter SDM630CT-MV (mV inputs)	MEL0089
SCT-10 current clamp	MEL0090

14 15

For more information on our hot water tanks, visit us at mixergy.co.uk email us at enquiries@mixergy.co.uk or call us on +44 (0)1865 884 343

mixergy

Mixergy Ltd, 2 Canal View, Wharf Farm, Eynsham Road, Cassington, Oxfordshire OX29 4DB

T: +44 (0)1865 884 343 | www.mixergy.co.uk